手机橙电

欢迎来到橙电平台

登录 免费注册

  在过去的几个月中,我与很多的决策者交流了有关人工智能特别是机器学习方面的问题。其中有几名高管已经被投资者询问了有关他们在机器学习(Machine Learning)方面的战略,以及在哪些方面运用了机器学习

市场     2017-11-03 00:00:00         中国自动化网

  在过去的几个月中,我与很多的决策者交流了有关人工智能特别是机器学习方面的问题。其中有几名高管已经被投资者询问了有关他们在机器学习(Machine Learning)方面的战略,以及在哪些方面运用了机器学习

  在过去的几个月中,我与很多的决策者交流了有关人工智能特别是机器学习方面的问题。其中有几名高管已经被投资者询问了有关他们在机器学习(Machine Learning)方面的战略,以及在哪些方面运用了机器学习。那么这个技术课题为什么突然会成为公司董事会讨论的话题呢?

  计算机应该为人类解决问题。传统的方法是“编写”所需的程序,换句话说,就是我们教电脑问题解决的算法。该算法详细描述了解决问题的过程,就像食谱一样。很多任务都可以用算法来描述。例如,在小学里,我们学习了数字加法算法。当涉及到要快速、完美地运行这种算法时,计算机比人类更胜任这个工作。

  
  然而,这个问题解决的过程是有局限性的。我们如何识别一张猫的照片呢?这个看起来很简单的任务却难以用一种算法来描述。让我们稍等片刻,仔细想想。即使是简单的说明(如“有四条腿”或“有两只眼睛”)也有其缺点,因为这些特点可能会被隐藏,或照片可能只显示了猫的一部分。如果我们遇到识别腿或眼睛的任务时,那与识别猫一样的困难。
  
  这正是机器学习展现其实力的地方。计算机不需要开发算法来解决问题,而是使用示例来学习算法本身。我们用样本来训练计算机。对于识别猫这个例子,我们需要使用大量的标注了猫的照片来训练系统(监督学习)。通过这种方式,算法会发生进化,继而成熟,并最终能够识别出陌生图片上的猫。
  
  事实上,在这种情况下,计算机通常不会学习经典程序,甚至都不会学习模型中的参数,例如网络中的边缘权重。这个原理可以与我们大脑(包含了神经元)的学习过程相比较。像大脑一样,与传统程序不同,这种具有边缘权重的网络几乎不可能被人类所理解。

  



  在这种情况下,被称为深度学习的人工神经网络学习方法得到了巨大的成功。深度学习是一种特殊的机器学习,反过来又是人工智能的一门学科,是计算机科学研究的主要分支。早在2012年,谷歌研究小组成功地训练了一个拥有16000台计算机,并从1000万段YouTube视频中识别猫(和其他对象类别)的网络。他们采用的就是深度学习技术。


  
  许多与练习有关的问题更倾向于属于“识别猫”这个类别,而不是“数字加法”,因此,很难用人类编写的算法来解决这些问题。这些问题通常是在某些数据中识别模式,例如识别图像中的对象、语言中的文本或交易数据中的欺诈行为。
  
  这里有一个简单的例子,我们来看一下预测性维护。想象一下许多传感器正在发送数据流,有时,某些机器会发生故障。现在的难题就是学习导致故障的数据流的模式。一旦学会了这种模式,就可以在正常操作期间识别出这种模式,从而预防潜在的故障。
  
  虽然机器学习的原理并不新鲜,但目前深受大众的追捧。这主要有三个原因:首先,用于应用和训练的大量数据的可用性(“大数据”);其次,我们现在拥有巨大的计算能力,特别是在云端;第三,一系列的开源项目使得每个人或多或少会使用一些算法。(本文引用地址:http://www.eepw.com.cn/article/201711/370980.htm
相关阅读:
今日焦点 Hot
本周热点

询价规则     |     报价规则     |     服务条款     |     法律声明

Copyright 2014-2025 www.gzcd88.com 广州橙电网络科技有限公司 版权所有 粤ICP备15096921号-4

期待您的反馈

你的需求是我的使命,你的建议的是我们的动力

关注橙电采购平台官方微信 - 橙电君