手机橙电

欢迎来到橙电平台

登录 免费注册

提高功率因数的意义 常用电气设备的功率因数除白炽灯、电阻、电热器等接近于1外,其他如电动机、变压器、架空线以及电气仪表的功率因数均小于1。如交流异步电动机,在空载时的功率因数只有0.2~0.3;在轻载时均为0.5;在额定负载时均为0.7~0.89

2017-12-08 00:00:00         电工之家

提高功率因数的意义 常用电气设备的功率因数除白炽灯、电阻、电热器等接近于1外,其他如电动机、变压器、架空线以及电气仪表的功率因数均小于1。如交流异步电动机,在空载时的功率因数只有0.2~0.3;在轻载时均为0.5;在额定负载时均为0.7~0.89

提高功率因数的意义
常用电气设备的功率因数除白炽灯、电阻、电热器等接近于1外,其他如电动机变压器、架空线以及电气仪表的功率因数均小于1。如交流异步电动机,在空载时的功率因数只有0.2~0.3;在轻载时均为0.5;在额定负载时均为0.7~0.89。不带电容器的日光灯的功率因数为0.45~0.6。负载的功率因数低,会引起一些不良后果,主要表现有两个方面:
(1)电力系统和用电企业的设备不能被充分利用。因为电力系统内的发电机和变压器等设备,在正常情况下,不允许长期超过额定电压和额定电流运行。所以当电压和电流都已达到额定值时,功率因数低便造成设备有功功率的输出较少。同样容量的设备,功率因数越低,其输出的有功功率就越少。
(2)引起电力系统电能损耗增大和供电质量降低。对输电和配电线路来说,线路中的损耗与电流大小的平方成正比,当输送同样大小的有功功率P=IUcosφ时,功率因数cosφ越低,输电线路中的电流I=P/Ucos φ就越大,而线路的电能损耗是与电流的平方成正比增加的。
另外,当功率因数降低,线路电流增大时,势必造成线路中电压降增大,这将导致线路末端的电压降低。若要满足末端用户电压要求,则线路始端的电压就要升高,从而会使整个线路的供电质量降低。
从以上两方面来看,提高用电功率因数是非常必要的,它不但可以提高电力系统和用电企业设备的利用率,做到在同样发电设备条件下,提高发电能力。而且可以减小电能损耗和提高用电质量,它是节约用电的一项很重要的技术措施。
改善功率因数的方法
功率因数低,表示无功功率需求量大,因此,提高功率因数的途径主要是减小电网中总的无功功率。各工矿企业中所需要的由电网供给的无功功率中,异步电动机约占70%,变压器约占10%~15%,其他为架空线路等。
提高功率因数的方法分为提高自然功率因数和无功补偿两种。
当采用降低各用电设备所需的无功功率来提高功率因数时称为提高自然功率因数;若采用产生无功功率的设备来补偿用电设备所需的无功功率以提高功率因数的方法,称为无功补偿法。
提高自然功率因数的办法有:合理配用异步电动机,即避免“大马拉小车”,降低轻载运行电动机的电压;限制异步电动机的空载电流;异步电动机同步运行;合理调整变压器的经济运行,消除变压器的空载现象等。
无功补偿是指在用电负荷处,装设一些能供给无功功率的设备,如并联电容器或并联同步补偿机(相当于容性负载),就地供给无功功率,以减小线路中的无功功率。由于并联电容器较同步补偿机经济,且有损耗少,维护运行方便,故障容易检查等优点,所以在电力网及工厂中得到广泛应用。
工矿企业电网中的负载大多数是电感性负载。电感性负载的功率因数之所以很低,是由于电感性负载本身需要向电网索取一定的无功功率来建立交变磁场,这就导致整个电网功率因数的降低。但并联电容器后,电感负载需要的无功功率就有一部分从电容器获得补偿,即电感负载所需的磁场能量不再全部由电源供给。这就减少了电源供给的无功功率,从而提高了功率因数。

相关阅读:

▪ 很多新手对电气图设计看不懂或者根本不知道从哪里下手,这次就教大家来学习下电气图基础知识。

▪ 随着工程师开发日益复杂的方案来满足舒适、安全、娱乐、动力总成、引擎管理、稳定性和控制应用的需求,现代车载电子产品的数量将持续稳定地增长。此外,随着非常复杂精密的电子产品在汽车应用中的日益普及,即使最基本型的车辆也配置了几年前一直是高档车才有的电子设备

▪ 种种迹象表明,太阳能正朝着主流发电能源的方向前进。日前,美国太阳能项目开发商BrightSource能源公司表示,正在研发新的存储技术,该技术可以使太阳能电站在太阳下山后,没有阳光的情况下继续发电供电

▪ 调制解调器是一种计算机硬件,它能把计算机的数字信号翻译成可沿普通电话线传送的模拟信号,而这些模拟信号又可被线路另一端的另一个调制解调器接收,并译成计算机可懂的语言。这一简单过程完成了两台计算机间的通信

▪ 变压器局部放电问题的探讨 局部放电是指发生在电极之间但并未贯穿电极的放电,它是由于设备绝缘内部存在弱点或生产过程中造成的缺陷,在高电场强度作用下发生重复击穿和熄灭的现象。它表现为绝缘内气体的击穿、小范围内固体或液体介质的局部击穿或属表面的边缘及尖角部位场强集中引起局部击穿放电等

今日焦点 Hot
本周热点

询价规则     |     报价规则     |     服务条款     |     法律声明

Copyright 2014-2025 www.gzcd88.com 广州橙电网络科技有限公司 版权所有 粤ICP备15096921号-4

期待您的反馈

你的需求是我的使命,你的建议的是我们的动力

关注橙电采购平台官方微信 - 橙电君